Understanding the Potential Toxic Properties of Lunar Dust

William T. Wallace
Universities Space Research Association
NASA/Johnson Space Center
Houston, TX

Outline

- Motivation
- Materials
- Activation and Monitoring of Lunar Dust and Analogs
 - Fluorescence
 - EPR
- Solubility Studies
 - ICP-MS
- Cellular Toxicity
 - A549

Words of Wisdom

"I think dust is probably one of our greatest inhibitors to a nominal operation on the Moon. I think we can overcome other physiological or physical or mechanical problems except dust."

Gene Cernan Apollo 17 Technical Debrief

Pathway of Dust Introduction

Lunar EVA Suits

Jack Schmitt (Apollo 17)

Problems Caused by Dust

- Obscured vision
 - Apollo 15: vision completely obscured below 60 ft when landing
- Clogged equipment
 - Apollo 12: wrist and suit hose locks clogged with dust
- Coated surfaces
 - Apollo 11: T.V. cable caused tripping after dust covering
- Inhalation
 - Apollo 15: gunpowder smell
 - Apollo 17: "hay fever" symptoms
- Degraded radiators
 - Apollo 16: degraded instrument performance from overheating
- Fooled instruments
- Caused seal failure
 - Apollo 14: measurable leaking of suits
- Abraded surfaces
 - Apollo 16: gauge dials unreadable from scratching

What is lunar dust?

- Lunar soil is defined as the loose fragmental material with a grain size smaller than 1 cm on and near the surface of the moon. It is a subset of the lunar regolith which includes all size fragments including boulders.
- Lunar dust is the finest size fraction of lunar soil.
 A working definition of lunar dust is that it is all grains smaller than 20 µm.

Lunar Dust

- Contains Si-containing minerals, various oxides, and trace metals
- Magnetic
- Particles are oddly shaped, with jagged edges, and do not pack together well

Lunar Dust Rims

Glassy rims produced by vapor/sputter deposition. Also contain ~ 10 nm Fe nanoparticles

Lunar Soil Formation

Lunar soil is formed by a combination of comminution (breaking down), agglutination (clumping together), and vapor deposition.

Meteorite Impact on the Moon

- 25 cm diameter meteorite traveling at 85,000 mph
- Kinetic energy of impact: 17 billion joules (equivalent to 4 tons of TNT)
- New crater: 14 meters wide by 3 meters deep
- Flash only 0.4 seconds in real-time

Recent Impacts

Lunar Dust Simulant (JSC-1A-vf)

Only 842 lbs of material returned from the moon! Simulant material needed for preliminary studies.

- Made from volcanic ash
- 50% SiO₂
- 42-45% other oxides (Al₂O₃, FeO, MgO, CaO)
 - Materials not pure oxides (mineral form)
- No trace metals
- Size distribution of particles similar to samples of lunar dust
- 90% smaller than 13 µm diameter
 - $-50\% < 3 \mu m$

Lunar Dust Activation

- Constant activation of lunar dust by meteorites, UV radiation, and elements of solar wind
- No passivating atmosphere
- Active dust could produce reactive species in the lungs
 - Freshly fractured quartz
- Must determine methods of deactivation before new lunar missions
- First, must understand how to reactivate dust on Earth

What Does "Activated" Mean?

- Presence of reactive sites on surface
 - Free radicals
- Ability to produce reactive species in solution

Previous Studies of Quartz Activation

- Grinding quartz gives electron spin
 resonance (ESR) signal characteristic of Si· or
 Si-O· radicals
- Increased grinding time produces higher signal
- Decrease in Si-based radicals over time in air
 - Half-life of ~30 hours, with 20% of signal detectable even after 4 weeks
- Ground quartz in aqueous solution produces
 OH radicals
- Radical production decreases with exposure to air
 - Half life of ~ 20 hours

V. Vallyathan et al., Am. Rev. Respir. Dis. 138 (1998) 1213-1219

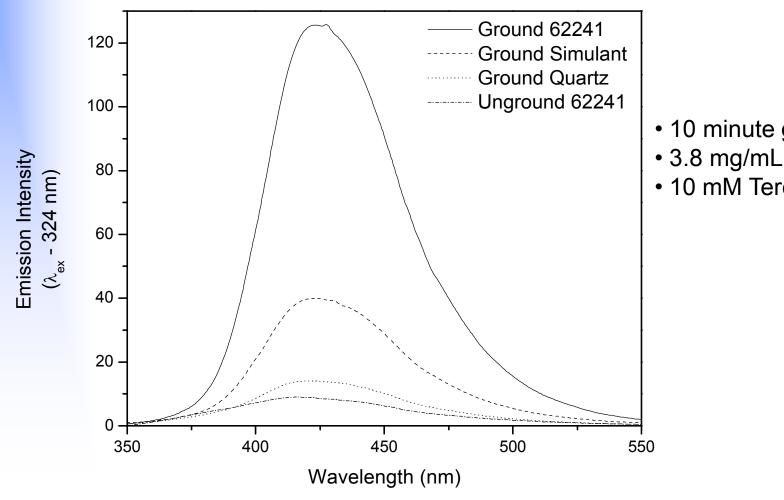
V. Castranova, Environ. Health Perspect. 102 (1994) 65-68.

Activation Methods Tested

- Crushing/Grinding
 - Mortar and pestle
 - Ball Mill

UV activation

Heating


Fluorescence

Hydroxyterephthalate as a Probe of Hydroxyl Radical Generation

Activity Comparison of Ground Lunar Soil, Lunar Simulant, and Quartz

- 10 minute grinding
- 3.8 mg/mL JSC-1A-vf
- 10 mM Terephthalate

Size Distribution after Grinding

B: JSC-1A-vf- 5.369 m²/g

C: 62241 (Apollo 16)- 8.404 m²/g

Effect of Grinding Time

- Grinding time has a direct
 effect on amount of hydroxyl
 radicals produced upon addition
 of ground quartz to solution
- Grinding also shown to produce higher number of silicon-based radicals in ESR spectra
- Increase in hydroxyl
 production also seen for lunar
 simulant with increased grinding

Activation by UV Exposure and Heating

UV Activation of Unground Lunar Simulant

- 10 mM Terephthalate
- 800 W UV (initial setting)

Exposure of unground simulant to UV radiation under vacuum leads to the production of hydroxyl radicals by the simulant when placed

UV Reactivation of Ground, Deactivated Lunar Dust and Simulant

Effect of Heating Dust

- 150 °C in vacuum oven
- Six hour heating at 175 °C shows some changes; further studies underway

EPR

EPR Spectra of Apollo 62241

- Broad peaks: no determination of silicon- or oxygen-based radicals
- Change in g-values from 2.11 (unground) to 2.09 (ground)
- Similar downward shifts and gvalues seen previously by Haneman and Miller*

MNP Spin-adduct Reaction

Spin-trapping of Radicals

- Level of activity increases in the order: quartz < lunar dust simulant < lunar dust
- Peak-to-peak splitting corresponds to radical containing no hydrogen
 - Activated species likely interacting with acetonitrile to produce radicals
- Future testing to include hydroxyl radical trap in water

Deactivation

Deactivation of Freshly Ground Lunar Simulant (JSC-1A-vf)

- Activity of freshly ground simulant can be reduced by exposure to humid environment.
- Multiple sets of deactivation experiments show simulant half life to be ~ 3 hours with activity approaching unground levels at ~ 24 hours.

Deactivation of Freshly Ground Quartz

Effects of Vacuum on UV

Activation/Deactivation of Lunar Simulant

Solubility

Technique

- Place 10 mg JSC-1A-vf in 20 mL of buffer solution in 50 mL centrifuge tube
- Rotate tubes for 72 hours under ambient conditions (23-25 °C, 30-50% RH)
- Flush syringes and 0.2 µm syringe filters with distilled water
- Filter solutions
- Measure concentrations using ICP-MS

pH Effects of Simulant

Leaching Effects of pH

- Buffer solutions were prepared at pH of 4.0, 4.26, 5.3, 6.7, and 7.4
- 10 mg of unground or ground JSC-1A-vf were added to 20 mL of each buffer solution in 50 mL centrifuge tubes (0.5 mg/mL)
- •Rotated slowly for 72 hours
- Filtered solutions were tested using ICP-MS
 - Si, Al, Fe, Ti, Ni, Cu, Zn, Ca, Mg, K, Na
- Ni, Cu, Zn, and Na not significantly above controls
- Future testing to include lunar dust and lung fluid simulants

Cell Culture

Direct toxicity of Quartz

Parameter	Aged Si	Fresh Si
Hemolysis ^b	2 ± 1%	39 ± 1%
Membrane leakiness ^c	15 ± 2%	$58 \pm 8\%$
Lipid peroxidation ^d	$1.5 \pm 0.4 \mu mol mal$	$7.5 \pm 0.6 \mu mol mal$

- Grinding of quartz also leads to direct toxicity in vitro
- Ability of ground silica to oxidize lipids is directly correlated to the number of radicals produced in solution and "freshness" of silica

Techniques

- A549 alveolar epithelial cells grown 72 hours
- Treatment media prepared by adding10 mg of sample to 10 mL F-12K media with no FBS
 - Dilutions prepared (200, 100, and 50 μg/mL) from stock
 - Growth media removed from cells and 1 mL treatment media added
 - Cells incubated in treatment media for 6, 24, or 72 hours
- Media removed and centrifuged (5 min, 6000 rpm) to remove dust or cellular debris
- Supernatants tested for inflammatory mediators (IL-8, IL-6, and TNF-α)
- Time dependence seen for cytokine production
- Future testing to include bronchial epithelial cells

Cytokine Production

Summary

- Grinding of lunar dust leads to the production of radicals in solution and increased dissolution of lunar simulant in buffers of different pH.
- Decreases in pH lead to increased leaching from lunar simulant
- Ground and unground lunar simulant and unground quartz have been shown to promote the production of IL-6 and IL-8, pro-inflammatory cytokines, by alveolar epithelial cells.
- These results provide evidence of the need for further studies on these materials prior to returning to the lunar surface.

Acknowledgements

Antony Jeevarajan

Dianne Hammond

Lunar Airborne Dust Toxicity Assessment Group (LADTAG)

Maureen McCarthy

Mike Kuo

Kelley Bradley

Camil Liceaga

Kristyn Bales